合作客户/
拜耳公司 |
同济大学 |
联合大学 |
美国保洁 |
美国强生 |
瑞士罗氏 |
相关新闻Info
-
> 咪唑类离子液体对不同煤尘润湿性能的影响规律(上)
> 无机盐浓度对HPAM不同复配体系降低界面张力能力的影响(二)
> 油乳剂疫苗黏度与稳定性影响因素
> 常见多元醇(乙二醇、甘油、季戊四醇、山梨醇等)在化妆品中的作用
> 无人机喷雾作业下荔枝叶片上的表面张力、接触角及雾滴沉积特性
> 温度对水—十二烷基硫酸钠体系与纯水体系界面张力、厚度的影响——结果与讨论、结论
> 硝酸酯类含能粘合剂PNIMMO及推进剂组分的表面张力、界面作用
> 麦芽糖醇棕榈酸酯的表面活性作用
> 钢笔墨水配方是什么?钢笔墨水的种类有哪些?
> 各种测量ILs汽化焓对比:表面张力法、热重法、简单相加法、 基团贡献法……(一)
推荐新闻Info
-
> 低总浓度下实现"超低界面张力"与"高黏弹性乳状液"的双重突破
> 岩液作用后海陆过渡相页岩表面张力变化研究
> 低表面张力解堵液体系适用于海上低压气井水侵伤害治理
> 不同比例墨水配制对量子点薄膜形貌的影响
> 含氟聚氨酯超疏水涂层表面性能、化学稳定性、耐摩擦性能研究——结果与讨论、结论
> 含氟聚氨酯超疏水涂层表面性能、化学稳定性、耐摩擦性能研究——摘要、实验部分
> 不同表面张力和接触角下膨胀土裂隙的发展演化过程(三)
> 不同表面张力和接触角下膨胀土裂隙的发展演化过程(二)
> 不同表面张力和接触角下膨胀土裂隙的发展演化过程(一)
> 基于表面张力测定探究油酸乙酯对油酸钠浮选石英的促进作用机理
不同温度和压力对AOT稳定CO2乳液的界面张力影响(三)
来源:中国石油大学学报(自然科学版) 浏览 583 次 发布时间:2025-02-06
2.2 CO2乳液岩心封堵实验结果
2.2.1 CO2乳液单岩心封堵实验结果
(1)温度的影响。AOT水溶液可以与CO2形成稳定的CO2乳液,在室内条件下完成了实验1#~4#(表1),实验结果如图8所示。由图8可知,温度对AOT稳定的CO2乳液有一定的影响,随着温度的增加,驱替压差降低,乳液驱替过程中的阻力因子有所降低,残余阻力因子也随之降低。尤其当温度由20℃升高至80℃时,CO2乳液驱替过程中的阻力因子由154降至124,降低幅度为19.5%;残余阻力因子由91降至40,降低幅度为55.1%。这是因为CO2乳液在岩心中停留过程中会向地层内流体扩散,AOT也会被地层流体稀释,导致残余阻力因子相对于阻力因子下降。之所以残余阻力因子的降低幅度大于阻力因子,这是由于高温下的CO2乳液界面黏弹性较低,相对于低温下的CO2乳液更容易扩散,不利于CO2乳液的存在及稳定。
由图8可知,温度不仅影响CO2乳液的封堵压差,也对最高压差的出现时刻有所影响。主要因为低温下的CO2乳液密度更高,相同气液比情况下CO2乳液内含的CO2量更多,向储层内流体的扩散效果更弱,同时有更高的界面黏弹性和更大的机械强度,在岩心驱替过程中可以更好地封堵地层,乳液也更早实现高强度封堵。
图8 1#~4#实验组结果
(2)压力的影响。通过AOT与CO2的界面特性的研究发现,压力是影响CO2乳液界面黏弹性的重要因素。因此进行了实验5#~10#,研究在岩心驱替过程中不同压力条件下CO2乳液的封堵能力,实验结果如图9所示。
图9 5#~10#实验组结果
从图9可以看出,随着压力的升高,阻力因子和残余阻力因子均逐渐增强,说明形成的乳液性质大幅提高,之后随压力的升高增幅变小。这是由于随着压力的升高,CO2乳液界面黏弹性增加,乳液稳定性增强,乳液的强度及抗冲刷能力提高,且CO2密度也随着压力的升高而增大,因此乳液的表观黏度增加较为明显,从而提高了乳液的封堵能力。
从图9可以看出,压力由4 MPa升至8 MPa过程中,阻力因子有大幅增加,此过程中CO2由非超临界状态转变为超临界状态,结合CO2乳液界面黏弹性分析,说明高压有利于CO2乳液的封堵,超临界CO2乳液的封堵效果优于非超临界CO2乳液,压力的升高使岩心封堵过程中的最高压差提前出现。
2.2.2 CO2乳液双岩心调剖封堵实验结果
为进一步研究温度及压力对乳液体系并联岩心封堵性能的影响,分别进行了4组实验(表2)。
相比于高渗岩心,低渗岩心中由于毛管力较大,使得CO2乳液液滴与液膜之间的压差大,导致CO2乳液易发生破裂而形成气窜,减弱了CO2乳液的封堵性能,从而降低了流动阻力,同时乳液更倾向于进入高渗岩心,在岩心渗流过程中叠加的贾敏效应会使高渗岩心的渗流阻力不断增加,直至大于低渗岩心的渗流阻力,依据这一机制CO2乳液能够实现分流作用。
CO2乳液的强度越高、界面黏弹性越好,其分流效果也会越明显。从图10(a)可以看出,在注入CO2乳液过程中,高渗岩心出口端产液量逐渐降低,低渗岩心出口端产液量逐渐增加,但是增加幅度很小,低渗最高分流量约为1.3 mL/min,这说明该实验条件下CO2乳液能够起到一定的分流作用,但是分流效果较差。对比图10(a)、(b)、(c),相同温度下,随着压力的升高,CO2乳液的调剖分流效果越来越明显,低渗岩心的分流量从1.3 mL/min升至2.3 mL/min,说明压力的升高有利于CO2乳液的调剖分流,可应用于深井和超深井等高压条件的CO2乳液调剖分流。
对比图10(c)、(d),当温度为20℃时,高渗岩心与低渗岩心出口端产液量基本持平;温度升高至60℃后,低渗岩心的分流量从2.5 mL/min降至2.2 mL/min,说明温度也是影响CO2乳液调剖分流效果的主要因素,应用CO2乳液的调剖分流时应考虑不同井深的温度场对CO2乳液稳定性和有效期的影响。
图10并联岩心实验组结果
3结论
(1)随着压力的增大,CO2-AOT体系的界面张力降低,扩张模量和界面黏弹性增大,液膜强度增大,压力增大到一定程度时,体系的界面张力降低的幅度和扩张模量增加速率变缓;随着温度的升高,体系的界面张力增加,扩张模量和界面黏弹性降低,液膜强度减小。
(2)温度对AOT稳定的CO2乳液有一定的影响,随着温度的增加,驱替压差降低,乳液驱替过程中的阻力因子有所降低,残余阻力因子也随之降低;低温下的CO2乳液向储层内流体的扩散效果更弱,拥有更高的界面黏弹性和更大的机械强度,在岩心驱替过程中可以更好地封堵地层,也更早实现高强度封堵。
(3)随着压力的升高,阻力因子和残余阻力因子均逐渐增加,在压力由4 MPa升至8 MPa过程中,阻力因子大幅增加,压力的升高使岩心封堵过程中的最高压差提前出现。
(4)高压低温条件下CO2乳液的界面张力低、强度高、界面黏弹性好,其分流调剖效果也越明显。温度和压力均影响CO2乳液调剖分流效果。